Mark Scheme 4736 June 2005

\begin{tabular}{|c|c|c|c|}
\hline 7 (i) \& \begin{tabular}{l}
Minimise \(70 x+80 y+50 z\) \\
'No more than twice as many packs of type \(Y\) as packs of type \(X\) ' \\
Other constraints
\[
\begin{aligned}
\& x \geq 200,0 \leq z \leq 50 \\
\& y \geq z \\
\& x+z \geq 220 \\
\& x+y \geq 300
\end{aligned}
\]
\end{tabular} \& B1
B1

B1
B1
B1

B1 \& | For 'minimise' a (non-zero) multiple of $7 x+8 y+5 z$ |
| :--- |
| For identifying this constraint from the list, or equivalent |
| Ignore extra 'constraints' unless contradictions |
| For boundary constraints on x and z |
| For this, or an equivalent correct answer |
| For this, or an equivalent correct answer |
| For this, or an equivalent correct answer |
| Use of strict inequalities - penalise first time only |

\hline | (ii) |
| :--- |
| (a) | \& Minimise 70x $+80 y(+2500)$ (or scaled through) Subject to

$$
\begin{aligned}
& y \leq 2 x \\
& x \geq 200 \\
& y \geq 50 \\
& x+y \geq 300
\end{aligned}
$$

 \& M1
A1
M1
M1

M1 \& | For replacing z by 50 |
| :--- |
| For their $y \geq 50$ |
| For at least two appropriate lines drawn on a graph with plausibly scaled axes. |
| For boundary lines drawn correctly (follow through their equations provided there are at least two horizontal or vertical lines and at least two lines that 'slope') |
| Feasible region correctly identified (correct answer only, not follow through) |

\hline (b) \& $$
\begin{aligned}
& (200,400),(200,100),(250,50) \\
& (200,100) \text { gives } 70 x+80 y=22000(£ 245) \\
& (250,50) \text { gives } 70 x+80 y=21500(£ 240) \\
& \text { Cost is minimised when } x=250, y=50 \\
& \text { Cost }=£ 240
\end{aligned}
$$ \& M1

A1

M1

A1

B1 \& | For reading off or calculating at least one of their vertices |
| :--- |
| For getting these three vertices correct with no extras |
| For calculating their cost at one of their vertices or using an appropriate line of constant cost |
| For identifying vertex $(250,50)$ |
| For $£ 240$ or 24000 p (with units) |

\hline (iii) \& \[
$$
\begin{aligned}
& \text { eg } x=300, y=0, z=0 \\
& \text { only costs } £ 210
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| 18 | \& For finding a feasible point with $z<50$ Or a written explanation For finding such a feasible point with a lower cost than that in (ii)(b) and showing that cost is lower.

\hline
\end{tabular}

physicsandmathstutor.com

