physicsandmathstutor.com

Mark Scheme 4736 June 2005 4736 Mark Scheme June 2005

1	(a) (i)	8 7 5 4 3 3 3 3 2 2	M1	For sorting the list into decreasing order
		First bag 8 2 Second bag 7 3 Third bag 5 4	M1	For trying to apply first-fit to their list
		Fourth bag 3 3 3 Fifth bag 2	A1	For a completely correct solution
	(ii)	A packing that uses fewer bags could be		
		First bag 8 2 Second bag 7 3 Third bag 5 3 2 Fourth bag 4 3 3	B1	For any valid packing into four bags (may be as an incorrect answer to using algorithm, need not be packed in this order)
	(b)	$\left(\frac{500}{100}\right)^3 \times 4 \text{ or } 125000000 \times 0.000004$	M1	For scaling 4 seconds by 5 ³ or for an equivalent valid and complete method. Condone minor errors with the number of zeros. For 500 or 500 seconds or 500 s.
		= 500	6	
2	(i)	eg	B1	For any simple graph with 4 vertices and 5 arcs
				Vertices need not be labelled Need not be planar
	(ii)	The sum of the orders of the vertices is twice the number of arcs, and hence is even. Hence the sum of the odd orders must be even	M1	Or start from a null graph and successively add in arcs. Each time an arc is added the number of odd vertices is either unchanged or it increases or
		and so there must be an even number of odd vertices.	A1	decreases by 2. So the number of odd nodes is always even
	(iii)	5 arcs \Rightarrow sum of orders of vertices = 10 Simple graph connecting vertices so each vertex has order 1, 2 or 3 1 + 3 + 3 + 3 = 10 or 2 + 2 + 3 + 3 = 10	M1	30 the number of out nodes is always even
		But $1 + 3 + 3 + 3$ is not possible since if three vertices have order 3 they are all connected to the fourth vertex so it also has order 3.	A1	Explaining why $1 + 3 + 3 + 3$ is not possible.
		With $2 + 2 + 3 + 3$ the two vertices of order 2 cannot be adjacent, since otherwise two arcs connect the other two vertices so not simple.	A1	Explaining why there is only one graph with nodes of orders 2, 2, 3, 3.
		Hence only one possible graph.	6	
3	(i)	$A \longrightarrow D$	M1	For a correct tree (labels not required)
		$G \stackrel{E}{\bullet} H$		
		Kruskal: DF, CD, BD and EF, FH, AC, EG	A1	For a valid order (using Prim or Kruskal)
		40	B1	For length = 40
	(ii)	A C D F E G H B A	M1	At getting at least as far as A C D F E (or shown on a diagram)
•				

			A1	For a correct cycle, ending back at A
	(iii)			(if shown on a diagram, needs direction shown)
	(III) (A)	ACEG and ABGH	B1	For both, vertices in any order
	(B)	5	B1	For 5
	(\mathbf{C})	ABCD	B1	For ABCD, vertices in any order
			8	·
4	(i)	17		Answer should be on insert sheet
		A 1 0 C 3 8 E 4 14 8 8 8 6 17 14		
		6 7 13 5	M1	For using Dijkstra's algorithm – updating at <i>E</i> and <i>F</i> (even if incomplete)
		B 2 6 F 6 19 G 7 22 6 24 21 19 22	A1	For all permanent labels correct
		D 5 16 16	B1	For valid order of assigning permanent labels
		Vertex B C D E F G		
		Length 6 8 16 14 19 22	B1	For copying their permanent labels, or correct values
		A-C-E-G	B1	Correct answer only
	(ii)	The only odd nodes are A and F	M1	For identifying A and F or value 19 or their 19
		Shortest path from A to F has length 19 km		
		120 + 19	M1	For 120 + their 19
	(\$22)	= 139 km	A1	For 139 (cao)
	(iii)	Need A and G odd and all other nodes even so need to connect F to $G = 10 \text{ km}$	M1	For identifying F and G or value 10 as only extra
		120 + 10 = 130 km	A1	For 130 (cao)
		120 - 10 130 km	10	1 57 155 (546)
				1

4736 Mark Scheme June 2005

5	(i)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	For initial pass through step 3 correct
		6 2 9 45 5 3 14 70 7 4 21 119 3 5 24 128	M1 A1	For updating each of <i>N</i> , <i>T</i> and <i>S</i> correctly For final values of <i>N</i> , <i>T</i> and <i>S</i> correct
		M = 4.8	B1	For 4.8 (ft their $T \div N$)
		D = 1.6	B1	For 1.6 (ft their $\sqrt{\{(S \div N) - (M^2)\}}$
	(ii)	15 additions and 5 multiplications	B1	
	(11)	20 + 5 = 25	B1	For 'their 20' + 5
	·			
	(iii)	3n+n+5	M1	For any function of n that gives their answer
				from (ii) when $n = 5$
		=4n+5	A1	For any expression that simplifies to $4n + 5$
	(iv)	$(5000 \div 1000) \times 2 = 10 \text{ seconds}$	B1	Or $2 \div 4005 \times 20005 = 9.99 \sim 10$ seconds
			10	
6	(i)			
	()	$P \mid x \mid y \mid z \mid s \mid t \mid u$	M1	For overall structure correct, including three slack
			1.22	variables
		1 -15 4 4 0 0 0 0	A1	For a correct initial tableau, with no extra
		0 10 -4 8 1 0 0 40	AI	constraints added. Accept equivalent forms.
		0 10 6 9 0 1 0 72		constraints added. Accept equivalent forms.
		0 -6 4 3 0 0 1 48		
		0 -0 4 5 0 0 1 40		
	(22)	Direct on 10 in column 40 man.	M1	For the compact rivest above for their tablesy
	(ii)	Pivot on 10 in x column 40 row	M1	For the correct pivot choice for their tableau
		1 0 -2 16 1.5 0 0 60	A1	For dealing with the pivot row correctly
		0 1 -0.4 0.8 0.1 0 0 4		
		0 0 10 1 -1 1 0 32	M1	For dealing with the other rows correctly
		0 0 1.6 7.8 0.6 0 1 72	A1	For a correct tableau
		0 0 1.0 7.8 0.0 0 1 72		
		x = 4, y = 0, z = 0	B1	For reading off x, y and z from their tableau
		P = 60	B1	For reading off <i>P</i> from their tableau
	(iii)	Pivot on 10 in y column	M1	For the correct pivot choice for their tableau
	(111)		A1	For dealing with the pivot row correctly
		1 0 0 16.2 1.3 0.2 0 66.4	AI	1 of dealing with the proof fow correctly
		0 1 0 0.84 0.06 0.04 0 5.28	M1	For dealing with the other rows correctly
		0 0 1 0.1 -0.1 0.1 0 3.2		For a correct tableau
		0 0 0 7.64 0.76 -0.16 1 66.88	A1	POF a correct tableau
		x = 5.28, y = 3.2, z = 0	D.1	
		A = 5.26, y = 5.2, z = 0 P = 66.4	B1	For the correct values of x , y and z at optimum
		1 - 00.4	B1	For the correct value of <i>P</i> at optimum
			14	

7 (i)	Minimise 70x + 80y + 50z	B1	For 'minimise' a (non-zero) multiple of $7x+8y+5z$
	'No more than twice as many packs of type <i>Y</i> as packs of type <i>X</i> '	B1	For identifying this constraint from the list, or equivalent
	Other constraints $x \ge 200, 0 \le z \le 50$ $y \ge z$ $x + z \ge 220$ $x + y \ge 300$	B1 B1 B1	Ignore extra 'constraints' unless contradictions For boundary constraints on <i>x</i> and <i>z</i> For this, or an equivalent correct answer For this, or an equivalent correct answer For this, or an equivalent correct answer Use of strict inequalities – penalise first time only
(ii) (a)	Minimise $70x + 80y (+ 2500)$ (or scaled through) Subject to	M1	For replacing <i>z</i> by 50
	$y \le 2x$ $x \ge 200$ $y \ge 50$	A1	For their $y \ge 50$
	$x + y \ge 300$ $500 \boxed{1.9}$	M1	For at least two appropriate lines drawn on a graph with plausibly scaled axes.
	400 feasible region	M1	For boundary lines drawn correctly (follow through their equations provided there are at least two horizontal or vertical lines and at least two lines that 'slope')
	100 200 300 400 500	A1	Feasible region correctly identified (correct answer only, not follow through)
(b)	(200, 400), (200, 100), (250, 50)	M1 A1	For reading off or calculating at least one of their vertices For getting these three vertices correct with no extras
	(200, 100) gives $70x + 80y = 22000$ (£245) (250, 50) gives $70x + 80y = 21500$ (£240) Cost is minimised when $x = 250$, $y = 50$	M1	For calculating their cost at one of their vertices or using an appropriate line of constant cost
	Cost is infillinised when $x = 250$, $y = 50$ Cost = £240	A1 B1	For identifying vertex (250, 50) For £240 or 24000 p (with units)
(iii)	eg $x = 300, y = 0, z = 0$ only costs £210	M1 A1	For finding a feasible point with $z < 50$ Or a written explanation For finding such a feasible point with a lower cost than that in (ii)(b) <u>and</u> showing that cost is lower.

physicsandmathstutor.com